Promediando curvas de permeabilidad relativa en yacimientos de metano en mantos de carbón con flujo bifásico en Queensland, Australia.
Resumen
En el presente trabajo se propone el uso de un único set de curvas de permeabilidad a ser empleado en los estudios de simulación y caracterización de yacimientos de gas en mantos de carbón (CBM), en vez del uso común de un set de curvas para cada estrato individual. Para comprobar la aplicabilidad de este procedimiento, se simula un yacimiento usando ambos métodos: el resultado de producción debe ser similar en ambas simulaciones. El modelo para promediar la permeabilidad absoluta en un flujo monofásico fue usado para el caso de predecir un promedio de permeabilidad relativa para un yacimiento con flujo bifásico. Luego de correr varios casos y corroborar que la ecuación propuesta no cumplía las expectativas, el enfoque del trabajo fue explicar el por qué del no funcionamiento de la ecuación propuesta. Una posible explicación fue la no consideración de la gravedad, que acorde a varias simulaciones presentadas, es un parámetro principal en las curvas de producción. La saturación de agua tampoco puede excluirse de la ecuación que prediga este promedio. Por tanto, si se quiere presentar una ecuación para el cálculo de promedio de permeabilidades relativas, es fundamental que tanto la gravedad como la saturación de agua estén incluidas en esta ecuación.
Descargas
Citas
AL-HUSSAINY, R., RAMEY JR, H. J. & CRAWFORD, P. B. 1966. The Flow of Real Gases Through Porous Media. Journal of Petroleum Technology, 18, 624-636.
ALLRED, L. D. & COATES, R. L. 1980. Methane Recovery From Deep Unmineable Coal Seams. SPE Unconventional Gas Recovery Symposium, Pittsburgh, USA, pp. 307-312.
AMYX, J. W., BASS, D. M. & WHITING, R. L. 1960. Petroleum reservoir engineering, New York U6 -Book, McGraw-Hill.
ARCHER, J. S. & WALL, C. G. 1986. Petroleum engineering: principles and practice, London, Graham & Trotman.
ARRI, L. E., YEE, D., MORGAN, W. D. & JEANSONNE, M. W. 1992. Modeling Coalbed Methane Production With Binary Gas Sorption. Society of Petroleum Engineers.
BAHRAMI, N., BYFIELD, R., HOSSAIN, M., CHITGAR, A. & WONG, J. 2015. Estimating Cleat Characteristics in Reservoir Simulation Models of Coal Seam Gas Reservoirs Using Welltest Analysis. Society of Petroleum Engineers.
BUULTJENS, J. 2013. Introduction -Special Edition: The Economic and Social Policy Implications of the Coal Seam Gas (CSG) Industry in Australia. Journal of Economic and Social Policy, 15, 0_1.
CHASE, R. W. 1977. Natural Gas Production From Coal Seams. Society of Petroleum Engineers.
CHEN, D., PAN, Z., LIU, J. & CONNELL, L. D. 2013. An improved relative permeability model for coal reservoirs. International Journal of Coal Geology, 109-110:45-47.
ECONOMICS., G. A. A. B. O. R. A. E. 2012. Australian gas resource assessment 2012. 348.
GAURAV, K., AKBAR ALI, A. H., SAADA, T. H. & KUMAR, S. 2012. Performance Analysis in Coal Seam Gas. Society of Petroleum Engineers.
GU, F. & CHALATURNYK, R. J. 2005. Sensitivity Study of Coalbed Methane Production With Reservoir and Geomechanic Coupling Simulation.
HAM, Y. S. & KANTZAS, Measurement of Relative Permeability of Coal to Gas and Water. Unconventional Resources Technology Conference, Denver, Colorado, 12-14 August 2013: pp. 2124-2142.
KHAN, C., GE, L. & RUDOLPH, V. 2015a. Reservoir Simulation Study for CO2 Sequestration in Saline Aquifers. International Journal of Applied Science and Technology, 16.
KHAN, C., GE, L., RUDOLPH, V. & RUFORD, T. 2015b. Coal Bed Methane Reservoir Simulation Study. Opportunities and Advancements in Coal Bed Methane in the Asia Pacific. Brisbane, Queensland, Australia: Geoscience Technology Workshop.
KOHLER, T. E. & ERTEKIN, T. 1995. Modeling of Undersaturated Coal Seam Gas Reservoirs. Society of Petroleum Engineers.
KRAUSE & BENSON, S. M. 2015. Accurate Determination of Characteristic Relative Permeability Curves. Elsevier, 13.
LAUBACH, S. E., MARRETT, R. A., OLSON, J. E. & SCOTT, A. R. 1998. Characteristics and origins of coal cleat: A review. International Journal of Coal Geology, 35, 175-207.
LU, M. & CONNELL, L. 2010. Dual Porosity Processes In Coal Seam Reservoirs. Society of Petroleum Engineers.
MAVKO, B. B., HANSON, M. E., NIELSEN, P. E. & LOGAN, T. L. 1986. Hydraulic Fracture Model For Application To Coal Seams. American Rock Mechanics Association.
MAZUMDER, S., PLUG, W.-J. & BRUINING, H. Capillary Pressure and Wettability Behavior of Coal -Water -Carbon Dioxide System. Society of Petroleum Engineers.
MORA, C. A. & WATTENBARGER, R. A. 2009. Comparison of Computation Methods for CBM Performance.
NSW 2015. Coal seam gas -glossary of terms. Water: Journal of the Australian Water Association, 42, 6-7.
PAN, Z. & CONNELL, L. D. 2012. Modelling Permeability for Coal reservoirs: A Review of Analytical Models and Testing Data. InternationalJournal of Coal Geology 92:1–44.
PAN, Z., CONNELL, L. D., CAMILLERI, M. & CONNELLY, L. 2010. Effects of matrix moisture on gas diffusion and flow in coal. Fuel, 89, 3207-3217.
PENG, D.-Y. & ROBINSON, D. B. 1976. A New Two-Constant Equation of State.
PETROWIKI. 2015. real Gases [Online]. Petrowiki. Available: http://petrowiki.org/Real_gases.
PRICE HS & AA, A. 1972. A mathematical model simulating flow of methane and water in coal mine systems.
PURL, R., EVANOFF, J. C. & BRUGLER, M. L. 1991. Measurement of Coal Cleat Porosity and Relative Permeability Characteristics. Society of Petroleum Engineers.
RIEKE III, H. H., RIGHTMIRE, C. T. & FERTL, W. H. 1981. Evaluation of Gas-Bearing CoalSeams.
SALMACHI, A., HAGHIGHI, M., BEDRIKOVETSKY, P. G. & XU, C. 2011. Thermal Gas Recovery from Coal Seam Gas Reservoirs Using Underground Coal Gasification. Society of Petroleum Engineers.
SEIDLE, J. 2011. Fundamentals of coalbed methane reservoir engineering, Tulsa, Okla, PennWell Corp.4-5
SHAHTALEBI, A., KHAN;, C., DMYTERKO;, A., SHUKLA;, P. & RUDOPLH, V. 2016. Investigation of Thermal Stimulation of Coal Seam Gas Fields for Accelerated Gas Recovery. Elsevier, 13.
TRENDS, O. A. E. 2009. GAS AND POWER: Queensland banks on coal-seam gas exports. Oil and Energy Trends, 34, 7.
TRUBE, A. S. 1957. Compressibility of Natural Gases. 70-71.[36]YU, W., SEPEHRNOORI, K. & PATZEK, T. W. 2016. Modeling Gas Adsorption in Marcellus Shale With Langmuir and BET Isotherms.
El titular de los derechos de autor de la obra, otorga derechos de uso a los lectores mediante la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Esto permite el acceso gratuito inmediato a la obra y permite a cualquier usuario leer, descargar, copiar, distribuir, imprimir, buscar o vincular a los textos completos de los artículos, rastrearlos para su indexación, pasarlos como datos al software o usarlos para cualquier otro propósito legal.
Cuando la obra es aprobada y aceptada para su publicación, los autores conservan los derechos de autor sin restricciones, cediendo únicamente los derechos de reproducción, distribución para su explotación en formato de papel, así como en cualquier otro soporte magnético, óptico y digital.