Desarrollo de una estrategia de producción de resina fenólica alineada con las necesidades del mercado en Ecuador
Resumen
El objetivo de este estudio fue el desarrollo de una estrategia para el diseño de una planta de producción de resina fenólica (espuma floral) que permita satisfacer la demanda existente en el país, mediante el uso del software de simulación PRO II. Para ello, se identificaron las necesidades de diseño a través de diagramas de bloques (BDF) y de flujo (PFD), teniendo en cuenta las operaciones unitarias involucradas. De igual forma, se presentó un reactor discontinuo diseñado para lograr una alta conversión en la producción de espuma floral, de acuerdo con la reacción para la obtención de espuma floral tipo resol. Para esto, se tomó en cuenta el valor del volumen, además de considerar las condiciones óptimas de operación, incluyendo la presión y la temperatura, a través de un análisis de sensibilidad. Los resultados se verificaron mediante el cálculo de balances de masa y energía, utilizando la demanda de espuma floral, que fue de aproximadamente 143 toneladas anuales, obtenida de la página web del Servicio Nacional de Aduana del Ecuador (Importaciones). Este valor fue empleado para el cálculo de producción diario, y ayudó a evidenciar la validez de la simulación, el valor simulado de 63.4552 kg/día, contra el valor de producción de resina fenólica calculado fue de 63.3547 kg/día. De esta manera se evidencia la pertinencia del estudio y así incentivar la generación de estudios que beneficien la creación y desarrollo de la industria petroquímica.
Descargas
Citas
COVARRUBIAS VELÁZQUEZ, H.E.; SÁENZ GALINDO, Aidé and CASTAÑEDA FACIO, Adali O. Resinas Termoestables De Fenol-Formaldehído. Rev. Iberoam. Polímeros, vol. 17, no. 6, pp. 266–276, 2016. Available: https://eviberpol.org/wp-content/uploads/2019/07/2016-covarrubias.pdf
ASIM, Mohammad; Saba, Naheed.; JAWAID, Mohammad; Nasir, Mohammed; Pervaiz, Mohammed and ALOTHMAN, Othlam. A Review on Phenolic Resin and its Composites. Curr Anal Chem, vol. 14, no. 3, pp. 185–197, May 2018. DOI: https://doi.org/10.2174/1573411013666171003154410
LEE, Seung-Hang; TERAMOTO, Yoshikuni and SHIRAISHI, Nobuo. Resol‐type phenolic resin from liquefied phenolated wood and its application to phenolic foam. J Appl Polym Sci, vol. 84, no. 3, pp. 468–472, Apr. 2002. DOI: https://doi.org/10.1002/app.10018
VENEGAS SEGURA, Silvia; DOMÍNGUEZ PATIÑO, Martha and VARGAS ORTEGA, Joel. Elaboración y caracterización de una espuma para el desarrollo e implementación de un proceso sustentable. Universidad Autónoma del Estado de Morelos. 2019. Available: http://riaa.uaem.mx/handle/20.500.12055/3138
TANG, Kaihong; ZHANG, Ailing; GE, Tiejun; LIU, Xiaofeng; TANG, Xiaojun and LI, Yongjiang. Research progress on modification of phenolic resin. Mater Today Commun, vol. 26, p. 101879, Mar. 2021. DOI: https://doi.org/10.3390/polym15173543
GONG, X; MENG, Y; LU, J; TAO, Y; Cheng, Y. and WANG, H. A Review on Lignin‐Based Phenolic Resin Adhesive. Macromol Chem Phys, vol. 223, no. 4, Feb. 2022. DOI: https://doi.org/10.1002/macp.202100434
SALTHAMMER, Tunga; MENTESE, Sibel and MARUTZKY, Rainer. Formaldehyde in the Indoor Environment. Chem Rev, vol. 110, no. 4, pp. 2536–2572, Apr. 2010. DOI: https://doi.org/10.1021/cr800399g
ALLEN, D.J. and ISHIDA, H. Thermosets: Phenolics, Novolacs, and Benzoxazine. Encyclopedia of Materials: Science and Technology, Elsevier, 2001, pp. 9226–9229. DOI: https://doi.org/10.1016/B0-08-043152-6/01662-4
BERDNIKOVA, Polina; ZHIZHINA, E.G. and PAI, Z.P. Phenol-Formaldehyde Resins: Properties, Fields of Application, and Methods of Synthesis. Catal Ind, vol. 13, no. 2, pp. 119–124, Apr. 2021. DOI: https://doi.org/10.1134/S2070050421020033
ALLEN, D.J. and ISHIDA, H. Thermosets: Phenolics, Novolacs, and Benzoxazine. Encyclopedia of Materials: Science and Technology, Elsevier, 2001, pp. 9226–9229. DOI: https://doi.org/10.1016/B0-08-043152-6/01662-4
FROLLINI, E.; Silva, C.G. and RAMIRES, E.C. Phenolic resins as a matrix material in advanced fiber-reinforced polymer (FRP) composites. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications, Elsevier, 2013, pp. 7–43. DOI: https://doi.org/10.1533/9780857098641.1.7
LI, Bing; YUAN, Zhongshun; SCHMIDT, John and XU, Chunbao (Charles). “New foaming formulations for production of bio-phenol formaldehyde foams using raw kraft lignin. Eur Polym J, vol. 111, pp. 1–10, Feb. 2019. DOI: https://doi.org/10.1016/j.eurpolymj.2018.12.011
AHMAD, Iftikhar; DOLE, John M.; CLARK, Erin M. R. and BLAZICH, Frank A. Floral foam and/or conventional or organic preservatives affect the vase-life and quality of cut rose ( Rosa × hybrida L.) stems. J Hortic Sci Biotechnol, vol. 89, no. 1, pp. 41–46, Jan. 2014. DOI: https://doi.org/10.1080/14620316.2014.11513046
XU, Jie; BRODU, Nicolas; DEVOUGUE-BOYER, Christine; YOUSSEF, Boulos and TAOUK, Bechara. Biobased novolac resins cured with DGEBA using water-insoluble fraction of pyrolysis bio-oil: Synthesis and characterization. J Taiwan Inst Chem Eng, vol. 138, p. 104464, Sep. 2022, DOI: https://doi.org/10.1016/j.jtice.2022.104464
HIRAI, Takayuki; YAGI, Kenichi; OKAMOTO, Kazuo; ONOCHI, Yusaku and KAWADA, Jumpei. In Situ Reactive Compatibilization of Polyamide 6 and Polycarbonate Blend by the Catalytic Effect of Phenol Novolac. Ind Eng Chem Res, vol. 59, no. 5, pp. 1855–1861, Feb. 2020, DOI: https://doi.org/10.1021/acs.iecr.9b05970.
A. Pizzi and C. C. Ibeh. Phenol–Formaldehydes. Handbook of Thermoset Plastics, Elsevier, 2014, pp. 13–44. DOI: https://doi.org/10.1016/B978-1-4557-3107-7.00002-6
ATIEMO‐OBENG, Victor A. and CALABRESE, Richard V. Rotor–Stator Mixing Devices. Handbook of Industrial Mixing, Wiley, 2003, pp. 479–505. DOI: https://doi.org/10.1002/0471451452.ch8
YUANDAN, L. Wet Floral Foam Making Machine Flower Mud Production Line Complete Floral Foam Making Production Line. alibaba. [Online]. Available: https://www.alibaba.com/product-detail/Wet-Floral-Foam-Making-Machine-Flower_1601117148148.html?module=company
YU, Yuxiang; WANG, Yufie; XU, Pingping and CHANG, Jianmin. Preparation and Characterization of Phenolic Foam Modified with Bio-Oil. Materials, vol. 11, no. 11, p. 2228, Nov. 2018, DOI: https://doi.org/10.3390/ma11112228
Servicio Nacional de Aduana del Ecuador, No Title.[Online]. Available: https://www.aduana.gob.ec/importaciones/
GARDZIELLA, Arno; PILATO, Louis A. and KNOP, Andre. Phenolic Resins: Chemistry, Reactions, Mechanism. Phenolic Resins. Springer, Berlin, Heidelberg. 1985. DOI: https://doi.org/10.1007/978-3-662-04101-7_2
BERDNIKOVA, P.V.; ZHIZHINA, E.G. and PAI, Z.P. Phenol-Formaldehyde Resins: Properties, Fields of Application, and Methods of Synthesis. Catal Ind, vol. 13, no. 2, pp. 119–124, Apr. 2021. DOI: https://doi.org/10.1134/S2070050421020033
LANDROCK, A. H. Handbook_of_Plastic_Foams, vol. 1. Elsevier Science, 1995. Available: https://www.sciencedirect.com/book/9780815513575/handbook-of-plastic-foams#book-description
CHANE-YUAN, Yang, TSAI, Ding-Chi and CHIEN, Yu-Shu. The strategy developed for high conversion and the multiplicity problems of biochemical reaction in a real CSTR with Cholette’s model. International Journal of Chemical Reactor Engineering, vol. 19, no. 12, pp. 1245–1270, Dec. 2021. DOI: https://doi.org/10.1515/ijcre-2021-0016
CREMER‐BUJARA, Esther; BIESSEY, Philip and GRÜNEWALD, Marcus. Simulation of Polymer Reactors Using the Compartment Modeling Approach. Macromol React Eng, vol. 14, no. 1, Feb. 2020, DOI: https://doi.org/10.1002/mren.201900034
DAGDE, Kekpugile Kenneth; AKPA, Gunorubon Jackson; OSAROWORLU, Obarijimah and ADELOYE, Olalekan Michael. Simulation of continuous stirred tank reactor (CSTR) for polypropylene production. Global Journal of Engineering and Technology Advances, vol. 5, no. 2, pp. 014–023, Nov. 2020. DOI: https://doi.org/10.30574/gjeta.2020.5.2.0095
LI, Shaofan. Computational and Experimental Simulations in Engineering, vol. 143. in Mechanisms and Machine Science, vol. 143. Cham: Springer International Publishing, 2024. DOI: https://doi.org/10.1007/978-3-031-42515-8.
GRANADO, Lérys; TAVERNIER, Romain; FOYER, Gabriel; DAVID, Ghislain and CAILLOL, Sylvain. Comparative curing kinetics study of high char yield formaldehyde- and terephthalaldehyde-phenolic thermosets. Thermochim Acta, vol. 667, pp. 42–49, Sep. 2018, DOI: https://doi.org/10.1016/j.tca.2018.06.013.
PIZZI, A and IBEH, C.C. Phenol-formaldehyde resins. Handbook of Thermoset Plastics, Elsevier, 2022, pp. 13–40. DOI: https://doi.org/10.1016/B978-0-12-821632-3.00013-0
DURÁN-GARCÍA, Martin Enrique and RUIZ-NAVAS, Ricardo Alejandro. Simulador de propiedades termodinámicas en la conversión de la biomasa forestal de aserrín de pino. Maderas. Ciencia y tecnología, no. ahead, pp. 0–0, 2020. DOI: http://dx.doi.org/10.4067/S0718-221X2020005000309.
GIL CHAVES, Iván Darío; GUEVARA LÓPEZ, Javier Ricardo; GARCÍA ZAPATA, José Luis; LEGUIZAMÓN ROBAYO, Alexander and RODRÍGUEZ NIÑO, Gerardo. Process Analysis and Simulation in Chemical Engineering. Cham: Springer International Publishing, 2016. Available: https://link.springer.com/book/10.1007/978-3-319-14812-0
MONNI, Janne; ALVILA, Leila; RAINIO, Jouni and PAKKANEN, Tuula T. Novel two‐stage phenol–formaldehyde resol resin synthesis. J Appl Polym Sci, vol. 103, no. 1, pp. 371–379, Jan. 2007. DOI: https://doi.org/10.1002/app.24615
LIANG, Bingchuan; LI, Xiangyu; HU, Lihong; BO, Caiying; ZHOU, Jing and ZHOU, Yonghong. Foaming resol resin modified with polyhydroxylated cardanol and its application to phenolic foams. Ind Crops Prod, vol. 80, pp. 194–196, Feb. 2016, DOI: https://doi.org/10.1016/j.indcrop.2015.11.087
PERMINOVA, Daria A.; MALKOV, Viktor S.; GUSСHIN, Viktor and EISENREICH, Norbert. Influence of glyoxal on curing of urea-formaldehyde resins. Int J Adhes Adhes, vol. 92, pp. 1–6, Jul. 2019, DOI: https://doi.org/10.1016/j.ijadhadh.2019.04.001
TANG, Kaihong; ZHANG, Ailing; GE, Tiejun; LIU, Xiaofeng; TANG, Xiaojun and LI, Yonjiang. Research progress on modification of phenolic resin. Mater Today Commun, vol. 26, p. 101879, Mar. 2021, DOI: https://doi.org/10.1016/j.mtcomm.2020.101879
Derechos de autor 2024 Jonathan Javier Sayavedra-Delgado; Edwin Alexander Quiñonez Gómez, Angel Fabrizio Zevallos Cuzme, Britany Geomara Bastidas Molina

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.
El titular de los derechos de autor de la obra, otorga derechos de uso a los lectores mediante la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional. Esto permite el acceso gratuito inmediato a la obra y permite a cualquier usuario leer, descargar, copiar, distribuir, imprimir, buscar o vincular a los textos completos de los artículos, rastrearlos para su indexación, pasarlos como datos al software o usarlos para cualquier otro propósito legal.
Cuando la obra es aprobada y aceptada para su publicación, los autores conservan los derechos de autor sin restricciones, cediendo únicamente los derechos de reproducción, distribución para su explotación en formato de papel, así como en cualquier otro soporte magnético, óptico y digital.